

Shri Vile Parle Kelavani Mandal's

Dwarkadas J. Sanghvi College of Engineering

(Autonomous College Affiliated to the University of Mumbai)

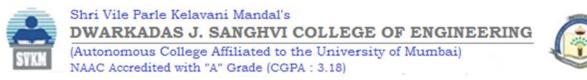
Scheme and detailed Syllabus (DJ19)

of Honors Deg<mark>r</mark>ee Program

in

Intelligent Computing

Revision: 1 (2022) With effect from the Academic Year: 2022-2023



Shri Vile Parle Kelavani Mandal's **DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING** (Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA : 3.18)

Scheme for Honors in Intelligent Computing: Department of Computer Engineering (Academic Year 2022-2023)

Sr.	Course	Course	Teaching Scheme (hrs.)				Continuous Assessment (A) (marks)			Semester End Assessment (B) (marks)					(A+B)	Total
51.	Code	Course	Th	Р	Т	Credits	Th	T/W	Total CA (A)	Th / Cb	0	Р	0 & P	P Total SEA (B)	(A+D)	(A+D) Credits
		Sem V														
1	DJ19CEHN1C1	Nature Inspired Computing	4			4	25		25	75				75	100	4
		Sem VI														
2	DJ19CEHN1C2	Ubiquitous Computing	4			4	25		25	75				75	100	4
3	DJ19CEHN1L1	Ubiquitous Computing Laboratory		2		1		25	25				25	25	50	1
	Sem VII															
4	DJ19CEHN1C3	Bayesian Computing	4			4	25		25	75				75	100	4
5	DJ19CEHN1L2	Bayesian Computing Laboratory		2		1		25	25				25	25	50	1
		Sem VIII														
6	DJ19CEHN1C4	Intelligent Security System	4			4	25		25	75				75	100	4
		Total	16	4	0	18	100	50	150	300	0	0	50	350	500	18

Scheme for Honors in Intelligent Computing: Department of Computer Engineering (Academic Year 2022-2023) Assessment Scheme

Continuous Assessment (A):

Course	Assessment Tools	Marks	Time (hrs.)
	One Term test (based on 40 % syllabus)	25 each	1
Theory	Second Term test (next 40 % syllabus) / presentation / assignment / course project / group discussion / any other.	(Avg.25)	
Audit course	Performance in the assignments / quiz / power point presentation / poster presentation / group project / any other tool.		as applicable
Laboratory	Performance in the laboratory and documentation.	25	
Tutorial	Performance in each tutorial & / assignment.	25	
Laboratory &Tutorial	Performance in the laboratory and tutorial.	25	

The final certification and acceptance of term work will be subject to satisfactory performance upon fulfilling minimum passing criteria in the term work / completion of audit course.

Semester End Assessment (B):

Course	Assessment Tools	Marks	Time (hrs.)	
Theory /	Written paper based on the entire syllabus.	75	2	
* Computer based	* Computer based assessment in the college premises.	75	3	
Oral	Questions based on the entire syllabus.	25	as applicable	
Practical	Performance of the practical assigned during the examination and the output / results obtained.	25	2	
Oral & Practical	Project based courses - Performance of the practical assigned during the examination and the output / results obtained. Based on the practical performed during the examination and on the entire syllabus.	as per the scheme	2	

Prepared by

Checked by

Principal

Honors in Intelligent Computing

Program: Computer Engineering

Course: Nature Inspired Computing (DJ19CEHN1C1)

Pre-requisite: --

1. Algorithms

Objectives:

- 1. To learn how natural and biological systems influence computational field
- 2. To understand the strengths and weaknesses of nature-inspired algorithms
- 3. To learn the functionalities of various Bio-inspired optimization algorithms

Outcomes: On completion of the course, the learner will be able to:

- 1. Understand the natural phenomena that inspire the algorithms
- 2. Apply nature-inspired algorithms to optimization
- 3. Select the appropriate strategy or optimal solution based on bio-inspired algorithms

Bayes	an Computing (DJ19CEHN1C1)	
Unit	Description	Duration
1	Introduction to Natural Computing	08
	From nature to natural computing, sample idea, Philosophy of natural computing, Natural computing approaches, Natural Phenomena, Models, and Metaphors, From Nature to Computing and Back Again, General Concepts – Individuals, Entities, Agents; Parallelism and Distributivity; Interactivity; Adaptation; Feedback; Self-Organization; Bottom-Up Vs Top-Down	
2	Artificial Neural Networks	09
	Biological Nervous Systems, Artificial Neural Networks, Neuron Models, Architectures, Supervised learning: Perceptron algorithm, Back Propagation Algorithm, Unsupervised learning: Self-organizing maps, ART, Reinforcement learning	
3	Evolutionary Computing – Genetic Algorithms	09
	Basic Principles of Genetics, Fitness Function; Selection: Selective Pressure, Random Selection, Proportional Selection, Tournament Selection, Rank-Based Selection, Boltzmann	

Semester: V

	Selection, Elitism; Reproduction Operators: Crossover operator, Mutation; Application:	
	Pattern Recognition, Numerical Function Optimization.	
4	Swarm Intelligence:	09
	Particle Swarm Optimization: Basic Particle Swarm Optimization: Global Best PSO, Local	
	Best PSO, Velocity Components; Basic PSO parameters, Single Solution Particle Swarm	
	Optimization: Guaranteed Convergence PSO, Social-Based Particle Swarm Optimization,	
	Hybrid Algorithms, Sub-Swarm Based PSO, Multi-Start PSO Algorithms, Repelling	
	Methods, Binary PSO; Application	
5	Ant Algorithm: Simple Ant Colony Optimization, Ant Colony Optimization Meta-	08
	Heuristic, Cemetery Organization and Brood Care, Division of Labor, Application:	
	Travelling Salesman Problem	
6	Artificial Immune Models: Natural Immune System: Classical view, Antibodies and	09
	Antigens, White Cells, Immunity types, Network Theory, Danger Theory; Artificial Immune	
	Models: Artificial Immune system algorithm, classical view models, Clonal Selection	
	Theory: CLONALG; Network Theory Models; Danger Theory Models; Application:	
	Intrusion Detection	
	Total	52

Books Recommended:

Text Books:

- L. N. de Castro, "Fundamentals of Natural Computing: Basic Concepts, Algorithms and Applications", 2006, CRC Press, ISBN-13: 978-1584886433
- Andries P. Engelbrecht, "Computational Intelligence an Introduction", Wiley, 2nd Edition
- 3. Tom Mitchell, Machine Learning, McGraw Hill, 1997, 0-07-042807-7

Reference Books:

- D. Floreano and C. Mattiussi, "Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies", 2008, MIT Press, ISBN-13: 978-0262062718
- Russell C. Eberhart, Yuhui Shi, James Kennedy, "Swarm Intelligence: The Morgan Kaufmann Series in Evolutionary Computation", 1st Edition, ISBN-13: 978-1558605954

- Sam Jones (Editor), "Bio Inspired Computing-Recent Innovations and Applications", Clanrye International; 2nd edition (2 January 2015), ISBN-10: 1632400812
- 4. Yang Xiao (Editor), "Bio-Inspired Computing and Networking", CRC Press,

Prepared by

Checked by

Head of the Department

Principal